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A visual incompressible magneto-hydrodynamics solver with
radiation, mass, and heat transfer

Necdet Aslan∗,†

Physics Department, Yeditepe University, Kayışdaĝı, 34755 İstanbul, Turkey

SUMMARY

A visual two-dimensional (2D) nonlinear magneto-hydrodynamics (MHD) code that is able to solve
steady state or transient charged or neutral convection problems under the radiation, mass, and heat
transfer effects is presented. The flows considered are incompressible and the divergence conditions on the
velocity and magnetic fields are handled by similar relaxation schemes in the form of pseudo-iterations
between the real time levels. The numerical method utilizes a matrix distribution scheme that runs on
structured or unstructured triangular meshes. The time-dependent algorithm developed here utilizes a
semi-implicit dual time stepping technique with multistage Runge-Kutta (RK) algorithm. It is possible
for the user to choose different normalizations (natural, forced, Boussinesq, Prandtl, double-diffusive and
radiation convection) automatically. The code is visual and runs interactively with the user. The graphics
algorithms work multithreaded and allow the user to follow certain flow features (color graphs, vector
graphs, one-dimensional profiles) during runs, see (Comput. Fluids 2007; 36:961–973) for details. With
the code presented here nonlinear steady or time-dependent evolution of heated and stratified neutral
and charged liquids, convection of mixture of neutral and charged gases, double-diffusive and salinity
natural convection flows with internal heat generation/absorption and radiative heat transfer flows can
be investigated. In addition, the numerical method (combining concentration, radiation, heat transfer, and
MHD effects) takes the advantage of local time stepping and employs simplified residual jacobian matrix
to increase pseudo-convergence rate. This code is currently being improved to simulate three-dimensional
problems with parallel processing. Copyright q 2009 John Wiley & Sons, Ltd.
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1064 N. ASLAN

1. RADIATION MAGNETO-HYDRODYNAMIC EQUATIONS

The fluid flows considered in this work are characterized by two-dimensional (2D) incompressible
Navier–Stokes plus Maxwell’s equations (i.e. MHD: magneto-hydrodynamic equations). The MHD
system is coupled to the temperature and concentration effects through gravitational force by means
of Bousinessq approximation and the fluid may experience radiative heat transfer. It is assumed
that the solution medium is optically thick so that the change in the radiation density is negligible
over radiation mean free path. In this ‘diffusion approximation’, there exists a local equilibrium
between the radiation field and the charged fluid [1]. The starting point for the derivations of
governing equations is non-relativistic equations of radiation MHD (i.e. conservation of mass,
momentum, magnetic flux, and total energy) given by

�U
�t

+∇·F̃� = �U
�t

+ �F
�x

+ �G
�y

=S (1)

where the conservative state vector, U, and the flux vectors F and G containing radiation effects
are given by

U=[�,�u+M r
x ,�v+M r

y, Bx , By,E
T+U r]T (2)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where � is the density, V=(u,v) is the velocity, B=(Bx , By) is the magnetic field, P∗ = P+
B2/2�0 is the total pressure, H

∗ =(ET+P∗)/� is the total enthalpy,Mr=(M r
x ,M

r
y) is the radiation

momentum density, U r is the radiation energy density, and ET is the non-radiative total energy
density defined by

ET= P

�−1
+ 1

2
�(u2+v2)+ B2

2�0
(4)

where P is the scalar pressure and � is the ratio of specific heats, �0 is magnetic perme-
ability. In addition, Qx,y =(�·V)x,y−kTx,y are heat fluxes (with k, the thermal conductivity),
�i j =�(�Vj/�xi +�Vi/�x j )− 2

3 (∇·V)�i j is the viscosity tensor (with �, the viscosity), Srx,y is the
radiation flux and T r is the radiation momentum flux. The source vector on the right side of
Equation (1) is given by

S=[0,Fm
x ,Fm

y ,FB
x ,FB

y ,�V ·F+q]T (5)
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A VISUAL INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS SOLVER 1065

where Fm and FB represent sources for momentum and magnetic fields, respectively, and q is the
heat source. As an example, the gravitational effects in the y direction give rise to Fm

x =0 and
Fm
y =−�g where g is the acceleration due to gravity. The radiation energy, radiation energy flux,

and momentum flux tensor are given, respectively, by

U r=
∫ ∫

h�fr dXd�, Sr=
∫ ∫

h�X fr dXd�, T r=
∫ ∫

h�XX fr dXd� (6)

where � is the radiation photon frequency, h is Planck constant, X is the solid angle through which
the photon propagates, and fr(�,X,r, t) is the photon distribution function.

The conservation equations given by Equation (1) to be supplemented by the divergence condi-
tions on magnetic field:

∇ ·B=0 (7)

which expresses the fact that magnetic monopoles do not exist. Initially, Equation (7) is satisfied
but if no action is taken, the numerical errors in divergence condition cumulates and causes the
production of unphysical magnetic monopoles and magnetic sinks. Successful methods to cure this
problem have been introduced in [3–5] and the references therein. Pseudo-iterations and artificial
relaxation technique is used in this work.

2. CONCENTRATION EFFECTS

It is allowed in this work that the fluid may include species with different chemical properties. In
that case, mass diffusion occurs whenever there is a concentration gradient in one of the species.
The concentration effects can be derived from the following mass conservation equations for each
species (here a total of 2 species is considered):

��i
�t

+∇·(�iVi )= �mi

�t
(8)

where the term on the right side represents the volumetric rate of creation of species i due to
chemical reaction (which was considered negligible in this work). By summing these equations
over species, one recovers the mass conservation law given by the first of Equation (1) with
the exception that now, the fluid flows with the bulk fluid velocity: V=(�1V1+�2V2)/� where
�=�1+�2 is the total density.

To distinguish the relative concentrations of different chemical properties of the flow, the diffu-
sion mass fluxes (i.e. Ji =�i (Vi −V)) can be used in Equation (8) to get

��i
�t

+∇·(�iV)=−∇·Ji (9)

When the mass flux of species is due to the mass concentration gradient, one can use Fick’s
law given by Ji =−D∇�i for the mass flux where D is the mass diffusivity of species 2 (salt,
ethanol, etc.). Thus, for the incompressible mixture flows (i.e. ∇ ·V=0) the following concentration
equation that governs the motion of one of the chemical species (i.e. here C=�2/�) can be obtained

�C
�t

+V ·∇C=D∇2C (10)
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1066 N. ASLAN

When this equation is solved along with regular Navier–Stokes equations, concentration effects in
the fluid are obtained. Notice that in this case, the effect of concentration appears as the gravitational
source term through Boussinesq approximation (BA).

3. RADIATIVE EFFECTS

In the systems involving high temperatures (i.e. hypersonic flows, plasma physics, liquid metal
environments, and furnace engineering) radiation effects should be considered along with the
internal heat generation rate, i.e. q in Equation (5).

The radiation terms given in Equations (1), (3) are dependent upon the coordinate system in
which they are measured and it is more convenient to transform them to the (primed) reference
frame of fluid particles as follows:

T r
′ =T r, U r′ =U r, Sr′ =Sr−VU r′−V ·T r (11)

When the radiation field is isotropic and radiation intensity weakly depends on the propagation
angle, the radiating fluid is said to be radiatively opaque. In this thermal equilibrium case, the
radiation energy and radiation flux vector can be written as Ur=4�∗T 4/c and Sr=(c/3k∗)∇Ur
where �∗ is the Stefan–Boltzmann constant, k∗ is the radiation absorption constant, and c is the
speed of light. Thus, the effect of radiation on the fluid momentum is now only through the radiation

pressure, PrUr/3, which is the isotropic limit of T r. In that case, considering the transformations
given in Equation (11), the equation of energy conservation turns into

�
�t

(ET+U r)+∇·
[
(ET+U r+P+Pr)V+k∇T − c

3k∗ ∇Ur

]
=0 (12)

Using the Rosseland approximation, further approximation is possible when the fluid is assumed
to be absorbing and emitting radiation but not scattering it (see [4] for details). In this case, the
effects of radiation pressure on fluid momentum are neglected resulting in the original momentum
equation without radiation terms. In addition, Ur can also be neglected in comparison with the
total energy. In that case, radiation flux term turns into the only term that survives in the energy
equation. Thus, by using the thermodynamic identity: dU =CpdT , Equation (12) can be converted
into the following heat equation:

�Cp

(
�T
�t

+V ·∇T

)
=k∇2T +	J ·J+q−
rad (13)

where J is current density, 	 is resistivity and


rad= 4�∗

3k∗ ∇2(T 4) (14)

is called the radiative heat flux source. In this work, different radiative approximations were
considered. In optically thick limit, the fluid cannot absorb its own emitted radiation. In this
non-gray fluid near equilibrium the radiative heat source can be taken as: 
rad=const(T −T∞) as
shown by Cogly et al. [6]. When the fluid is gray it absorbs its radiation but does not scatter it.
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In that case the Rosseland approximation can be used and the radiative source can be linearized
as: T 4≈4T 3∞T −3T 4∞ as done in [4]. In this case, radiative heat source turns into


rad≈ 4�∗

3k∗

[
(1+rT )3(∇2T )+3r(1+rT )2

((
�T
�x

)2

+
(

�T
�y

)2
)]

(15)

where r =�T/T∞ is called the radiation source coefficient. The Rosseland approximation can also
be used for optically thin fluid in which temperature gradients are so small that radiation source
coefficient is negligible. In that case, r →0 and Equation (15) reduces to


rad≈ 4�∗

3k∗

(
�2T
�y2

)
(16)

when diffusion effects are negligible in the x direction.
These are the simplest approximations to include the radiative effects into the energy equation

for incompressible flows. Full radiation MHD equations including the transport equations for the
radiation are being developed by the author.

4. BOUSSINESQ APPROXIMATION

When gravitational forces are comparable to inertial and viscous forces for the low speed (incom-
pressible) flows satisfying ∇ ·V=0, the temperature, concentration, and pressure effects (the latter
much smaller than others) on the density should be included. To account for these effects, it
is assumed that the density varies linearly with temperature and concentration according to the
following BA:

�=�0[1−�T (T −T0)+�C (C−C0)] (17)

where �0 is reference density, �T =−(1/�0)��/�T |C and �C =(1/�0)��/�C |T are the expansion
coefficients due to temperature and concentration, respectively. When gravitational effects are
included and Equation (17) is used, the vertical momentum source, Fm

y in Equation (5), can be
written as

Fm
y =−�g=−�0g+�0g(�T�T +�C�C) (18)

Note that the first term on the right-hand side of this equation will be combined with the pressure
gradient terms in momentum equation as will be shown later.

Since BA approximation is a simple approximation for the mass conservation (or continuity)
equation, its validity should be checked. Writing Equation (17) as

��=�T�T +�C�C

and differentiating it with respect to time one gets:

��

�t
=−�T

�T
�t

+�C
�C
�t

(19)
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inserting �C/�t and �T/�t from Equations (10), (13) one gets:

��

�t
+V ·(�C∇C−�T∇T )= ��

�t
+V ·∇�=�

where

�= �T

Cp

[
k∇2T +q+ 4�

3k∗ ∇2(T 4)

]
+D�0�C∇2C (20)

happens to be the error term of BA. This term is very small since the factor multiplying the
first bracket of Equation (20) is negligible. For example, for water at atmospheric pressures
�T ≈3×10−4K−1 and Cp ≈4×103 J/kgK for temperatures less than 100◦C this factor becomes
nearly 0.75×10−7 kg/J. Similarly, for mixtures, D�C is also a very small number. Thus, when
internal heat production is not very strong and temperature and concentration gradients are not
very large, this error is usually very small so that the BA produces rather accurate solutions for
buoyant natural mixture flows for a wide range of parameters. Thus, BA can be used to get an
accurate coupling of temperature and concentration effects to the momentum equations through
the gravitational source. Note that this coupling provides a good approximation for the equation of
state, �=�(T,C) when the departures from the reference density, �0=�(T0,C0) is small enough.

5. DIVERGENCE CONDITIONS AND PSEUDO-ITERATIONS

Because of the divergence conditions in velocity and magnetic fields, the incompressible system
given by Equation (24) is numerically very difficult to solve. Although there exists different
techniques to handle this problem, the easiest and most robust technique is to add pseudo-time
derivatives of all variables and modify divergence conditions as

1

�2
�P ′

��
+∇·V=0,

1

�2
��

��
+∇·B=0 (21)

where � is the pseudo-time, �2 and �2 are artificial compressibility and magnetic relaxation factors
and � is called artificial magnetic flux function whose gradient is inserted in Faraday’s law as a
Lagrange multiplier to enforce divergence condition on magnetic field:

�B
�t

+∇×(V×B)+∇�= 	

�0
∇2B (22)

Note that � also satisfies ∇2�=(	/�0)∇·(∇2B) but it is not necessary to solve this equation if
�=0 is used as both initial and boundary conditions. In that case, � becomes significant only
at mesh points where divergence condition is violated and it acts as a Lagrange multiplier to
dissipate this problem. Note that similar ideas have been used in [2, 7, 8]. The addition of pseudo-
time derivatives and modifying divergence conditions are indeed some kind of preconditioning
technique whose details for Navier–Stokes equations can be found in [9, 10].
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In this work, conservation laws given by Equation (1) are written in primitive form since
incompressible flows with no shocks and discontinuities are considered in this work. In two
dimensions Equation (1) becomes:

�U
�W

�W
�t

+ �F
�U

�U
�W

�W
�x

+ �G
�U

�U
�W

�W
�y

=S(U) (23)

where W is the primitive state vector to be described soon and UW =�U/�W is the conservative-
to-primitive jacobian matrix. Pre-multiplying Equation (1) by the inverse of UW , one gets

�W
�t

+A
�W
�x

+B
�W
�y

=S(W) (24)

where A=U−1
W FUUW and B=U−1

W GUUW are now called as primitive flux jacobian matrices and
S(W)=U−1

W S(U) is the primitive source vector. As stated earlier, these equations are modified by
inserting pseudo-time derivatives as follows:

�W
��

+ I�
�W
�t

+A
�W
�x

+B
�W
�y

=S(W) (25)

where I� =diag[0,1,1,1,1,1,1,0] is the diagonal matrix used to eliminate divergence conditions
from real time advancements as it has been used in [11] for the numerical solutions of Navier–
Stokes equations. The pseudo-time iterations are applied between each time level until convergence
is established in pseudo-time (i.e. �W/��→0), so that Equation (25) reduces to Equation (24)
provided that the divergence conditions are satisfied within a pre-specified tolerance. Note that as
�P ′,�/��→0 then divergence conditions in Equation (21) are satisfied regardless of the values
of �2 and �2, which are usually taken within the interval [12, 13].

6. DIMENSIONLESS EQUATIONS

The incompressible MHD equations obtained with this procedure produce useful solutions when
they are cast into a dimensionless form since the flow properties depend upon the physical parame-
ters, such as viscosity and resistivity. In this work, the space r=(x,y), time, velocity, temperature,
concentration, pressure, and electric and magnetic fields as well as � were made dimensionless
using

x ′, y′ = x, y/L , t ′ = t/t0, V′ =V/V0

 = T −T1
�T

, C ′ = C−C1

�C
, P ′ = P+�0gy

P0
, E′ = E

E0
, B′ = B

B0
, �′ = �

�0

(26)

where �T =T2−T1, �C=C2−C1 while T1,2 and C1,2 can be selected to specify wall or free-
stream conditions as well as a specific normalization point. Note that by modifying pressure as
P∗ = P+�0gy, one has �P/�x=�P∗/�x and �P/�y=�P∗/�y−�0g so that the first term in
Equation (18) can be absorbed in pressure.

The form of velocity normalization factor, V0 specifies the type of normalizations. For forced
or mixed convection (FC)

V0= L/t0 (27)
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1070 N. ASLAN

is taken, for natural convection (NC) V0=�/L is chosen, for Boussinesq fluid convection (BC)
V0=�/L is taken, for Prandtl fluid convection (PC) V0=�

√
Ra/L and for radiation and mass

convection V0=�/L are used. The dimensionless parameters used in this work are defined as

Re= LV0
�

, Pr = �

k
, RaT,C = g�T,C L

3�(T,C)

��
, Rai= g�T L

5q ′′′

�k�
, Le= D

�
(28a)

Fr = 4�∗T 3
0

kk∗ , N = �B2
0 L0

�0V0
, Ec= V 2

0

Cp�T
, Sc= �

D
, Rem=�0�V0L0 (28b)

where Re is Reynolds number, Pr is the Prandtl number, Ra is the Rayleigh number, Rai is the
internal Rayleigh number, Fr is the Froudes number, N is magnetic interaction parameter, Ec is
the Eckert number, Sc is Schmidt number and Rem is magnetic Reynolds number. In addition,
where �=�/�0 is the kinematic viscosity, k is the thermal conductivity, �=k/�0Cp is the thermal
diffusivity, �=1/	 is the electrical conductivity, Cp is the ratio of specific heats, and k∗ is the
mean radiation absorption coefficient. With the normalization used here, the following relationship
among the dimensional parameters are found: P0=�0V

2
0 = B2

0/�0=E0/V0.
The dimensionless form of incompressible MHD equations including radiation, concentration,

and heat transfer effects can be explicitly written as:

1

�2
�P ′

��
+ �u

�x
+ �v

�y
=0 (29)

�u
��

+ �u
�t

+u
�u
�x

+v
�u
�y

+ �P ′

�x
=N∗

V∇2u+N∗
B Fx + N

Rem
(J×B)x (30)

�v

��
+ �v

�t
+u

�v

�x
+v

�v

�y
+ �P ′

�y
=N∗

V∇2v+N∗
B Fy+ N

Rem
(J×B)y (31)

�

��
+ �

�t
+u

�

�x
+v

�

�y
=N∗

 ∇2+N∗

�rad+N∗

heat+NEcJ ·J (32)

�C
��

+ �C
�t

+u
�C
�x

+v
�C
�y

=N∗
C∇2C (33)

�Bx

��
+ �Bx

�t
+u

�Bx

�x
+v

�Bx

�y
−By

�u
�y

−Bx
�u
�x

= 1

Rem
∇2Bx (34)

�By

��
+ �By

�t
+u

�By

�x
+v

�By

�y
−Bx

�v

�x
−By

�v

�y
= 1

Rem
∇2By (35)

1

�2
��

��
+ �Bx

�x
+ �By

�y
=0 (36)

Note that the current density in Equations (30)–(32) can be taken either from Ohm’s law given by:

J=(Eext+V×B)/	=∇×B/�0 (37)
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Table I. Normalization types and dimensional parameters.

N∗
V N∗

B N∗
 N∗

heat N∗
C

FC 1/Re Gr/Re2 1/RePr Rai/Pr Ra Re Le/Pr Re
NC Pr Gr Pr2 1 Rai/Ra Le
BC 1 Ra/Pr 1/Pr Rai/PrRa Le/Pr
PC Pr/

√
Ra Pr 1/

√
Ra Rai/Ra

3/2 Le/
√
Ra

RC 1 Gr 1/Pr Rai/PrRa 1/Sc
DD Pr RaT Pr 1 0 1/Le

FC: V0=L/t0, NC: V0=�/L , BC: V0=�/L , PC: V0=�
√
Ra/L , DD: V0=L/�.

or from Ampere’s law:

J= 1

�0
∇×B (38)

In addition, N∗
V ,N∗

B,N∗
 ,N∗

heat,N
∗
C ,N∗


,Nheat denote the normalization parameters whose forms
depend on different normalizations listed in Table I. Note that, if the first term of Equation (18)
is combined with �P/�y in the y-momentum equation, the rest of the term in this equation gives
rise to the following source for v-velocity:

S2=N∗
B(+NC ′) (39)

After making the equations dimensionless, the primitive state used in Equations (23)–(25) is
defined as:

W=[P ′,u,v,,C, Bx , By,�]T (40)

The coefficients of �W/�x as presented in Equation (25) give rise to the following jacobian matrix,
A(�2,�2):

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �2 0 0 0 0 0 0

1 u 0 0 0 0
N By

Rem
0

0 0 u 0 0 0 −N Bx

Rem
0

0 0 0 u 0 0 0
NEBx

Rem

0 0 0 0 u 0 0 0

0 −Bx 0 0 0 u 0 1

0 0 −Bx 0 0 0 u 0

0 0 0 0 0 �2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)
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and the viscous and source terms give rise to the following source vector:

S=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

N∗
V∇2u+ N

Rem
(J×B)x

N∗
V∇2v+N∗

B(+NC)+ N

Rem
(J×B)y

N∗
 ∇2+N∗

��rad+Nheat+NEcJ ·J
N∗
C∇2C

1

Rem
∇2Bx

1

Rem
∇2By

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where J ·J=J2 is the heat source due to electric currents. Note that the jacobian matrix, B, can be
obtained by interchanging 2.

3. and
6.
7. columns and rows of A. Note that using the RC normalization

(given in Table I) for radiative heat transfer problems and taking N∗
� =1/NradPr , the radiation

source can be written as

�rad=− 4

3NradPr

[
(1+r)3(∇2)+3r(1+r)2

((
�

�x

)2

+
(

�

�y

)2
)]

(43)

where r =�/∞ is the radiation source coefficient and ∞ is the reference temperature. Note
that this term introduces higher-order thermal gradients into the scheme in order to include very
simple radiative effects.

7. SPATIAL DISCRETIZATION: MATRIX DISTRIBUTION

A matrix distribution (MD) scheme was used for the spatial discretization of the MHD equations
given by Equation (24). In this scheme, W was assumed to change linearly within the triangles
satisfying

W(x, y, t)=
M∑
k
Wk(t)Nk(x, y) (44)

where M is the total number of neighbor nodes around node k of triangle T , Wk(t) is the value
of W at node k and Nk(x�, y�)=�k,� is the linear shape function shown in Figure 1. Since the
variables are located at the vertices (nodes) of triangular mesh, the median dual cell (veroni) area,
�k , around a typical node, k, is obtained by connecting the cell centers through the area boundary
given by ��k , see Figure 1(b). In order to accomplish the spatial integration of MHD equations
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N(x,y)

Ωk
k

i
j

T
k

n k

δΩ k

i
j(a) (b)

Figure 1. (a) The linear shape function above node k of triangle T and (b) inward normal, 
nk across node
k, median dual cell area, �k and its boundary, ��k .

over such an area, Equation (25) is multiplied by a linear test function w�(x, y) that vanishes on
��� and it is integrated over the area∫ ∫

�

[
�W
��

+ I�
�W
�t

]
w� d�+

∫ ∫
�

[
A

�W
�x

+B
�W
�y

]
w� d�=

∫ ∫
�
[S]w� d� (45)

Using Equation (44) the first integral in Equation (45) becomes∫ ∫
�

w�

M∑
k=1

Nk

[
�Wk

��
+ I�

�Wk

�t

]
d�=

m∑
k=1

M�,k

[
�Wk

��
+ I�

�Wk

�t

]
(46)

where M�,k is the element of the lumped mass matrix given by M=∫∫� w�Nk d�. By taking
W� =N� one gets M=∫∫� N�Nk d�=∑T∈� ��,k and writing the global system as the summation

over triangles (i.e.
∑M

k=1→∑
T∈��

∑3
k=1), Equation (46) becomes:

∑
T∈��

3∑
k=1

�T

3
��,k

[
�Wk

��
+ I�

�Wk

�t

]
=��

[
�W�

��
+ I�

�W�

�t

]
(47)

where now �� is the median dual cell area around node �. Inserting Equation (44) into the
convective terms (second integral) in Equation (45) one gets∫ ∫

�
N�

[
A

�W
�x

+B
�W
�y

]
d�=

∫ ∫
�
N�

M∑
k=1

[
AWk

�Nk

�x
+BWk

�Nk

�y

]
d� (48)

Note that since N (x, t) is linear over the triangle, its gradient is constant and given by: ∇Nk =
nk/2�T where nk is the inward edge normal vector across the node k and scaled by its length,
see Figure 1(b). Using Gauss’ theorem and trapezoidal rule for integration, the right hand side of
Equation (48) can be written as

=
∮

��
N�

M∑
k=1

1

2
[AWknk,x +BWknk,y]d�= ∑

T∈��

∮
��T

N�

3∑
k=1

KkWk d�T (49)

where

Kk = 1
2 [A(Wk)nk,x +B(Wk)nk,y] (50)
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is called flux matrix which characterizes the MHD system, A(W), B(W) are mesh-averaged jaco-
bian matrices andW=(W1+W2+W3)/3 is mesh-averaged state vector. The characteristic speeds
of the MHD system are indeed the eigenvalues of this matrix:

�=Vv,Vn,
1

2

[
Vn±

√
V 2
n +4�2

]
,
1

2

[
Vn±

√
V 2
n +4�2

]
,Vn±

√
N

Rem
B2
n (51)

where Vn =unx +vny and Bn = Bxnx +Byny are normal speed and magnetic field, respectively,
and �2 and �2 act as artificial sound speeds arising from the divergence conditions on velocity
and divergence, respectively. In calculating the pseudo-time step as given in Equation (64), the
maximum value of these eigenvalues over the mesh is used.

Defining the mesh-averaged distribution matrix, BT
� and total fluctuation vector, UT as

BT
� = 1

�T

∫ ∫
N� d�, UT =

3∑
i=1

KiWi (52)

Equation (48) becomes ∫ ∫
�

[
A

�W
�x

+B
�W
�y

]
N� d�= ∑

T∈��

BT
�UT (53)

which shows that the total fluctuation vector in the triangle is distributed to the node � of triangle
T using the weight matrix, BT

� . In addition, it can be shown that the source term on the right-hand
side of Equation (45) becomes ��S� . When all the terms are collected, Equation (45) finally turns
into

��

[
W�

��
+ I�

�W�

�t

]
+ ∑

T∈��

B��T +S��� (54)

The distribution matrix can be derived by a second-order Lax-Wendrof-type scheme using the
following Taylor’s expansion:

Wn+1(x, y)=Wn(x, y)+�t
�W
�t

n

+ �t2

2

�2W
�t2

n

+ �t3

6

�3W
�t3

n

+·· · (55)

where n is the time level and �t is the time step. First, writing Equation (24) as

�W
�t

=−Ai
�W
�xi

+S, i=1,2 (56)

where x1,2= x, y and A1,2= A, B and inserting it into the above Taylor expansion one gets:

Wn+1(x, y)−Wn(x, y)=�t

(
−Ai

�W
�xi

+S
)n

+ �t2

2

�
�t

(
−Ai

�W
�xi

+S
)n

+·· · (57)

Neglecting higher-order terms and integrating this equation over �� around node � one gets:∫ ∫
��

(Wn+1
� −Wn

�)d�=�t
∫ ∫

��

[(
−Ai

�W�

�xi
+S�

)n

+ �t

2

�
�t

(
−Ai

�W�

�xi
+S�

)n]
d� (58)
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After trivial derivations as carried out earlier, one can show that the left-hand side of Equation (58)
evaluated at node k of triangle T turns into: (Wn+1

� −Wn
�)��, the first integral on its right-hand

side becomes: �tUT /3 and the last integral becomes: (�t2/2)(K�/�T )UT and finally the body
source turns into: �tS(W)/3, noting that the time derivative of the source was neglected.

By combining all these results, Equation (58) can be written as

(Wn+1
� −Wn

�)�� = �t
UT

3
+ �t2

2�T
K�UT + �t

3
��S

= �t

(
1

3
I + �t

2�T
K�

)
UT (W̃)+ �t

3
��S(W) (59)

showing that the simplified Lax-Wendroff weight matrix is given by:

B� = 1

3
I + �t∗

2�T
K� (60)

where �t∗ =CFLhmin/�max, �max is the maximum modulus of the eigenvalues given in Equation
(51) and hmin is the minimum side length of the mesh with CFL�0.5, the CFL number. It must
be noted here that regular system Lax-Wendroff weight matrix that requires inversion is given as
(see [14])

B� = 1

3
I +CFLK�

(
3∑

m=1
|Km |

)−1

(61)

This matrix is not used in the code presented here since it includes many off-diagonal terms and
slows down the code significantly since it must be calculated for each node in the mesh. It is
noted that different forms of distribution matrices can be used as stated in References [14–16] but
numerical experience shows that using different forms of distribution matrix does not change the
solutions appreciably, especially when steady state solutions are seeked.

With a trivial algebra, one can show that the viscous source terms given in Equation (58) can
be written as (�/4�T )

∑3
j=1n� ·n jW j .

When all the results are put together, the explicit pseudo-iterations for the solution vector at
node � of triangle T becomes:

Wm+1
� =Wm

� +��

[
Res(W�)− I�

�W�

�t

]
(62)

where

Res(W�)=− 1

��

∑
T∈��

[
BT

�UT + �

4�T

3∑
j=1

n� ·n jW j −S(W)
�T

3

]
(63)

is the residual vector to be assigned to the state vector located at node � of triangle T . It is
noted that in order to increase temporal accuracy, this pseudo-time integration was carried with
the Runge-Kutta (RK) algorithm (this will be described later).
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8. TEMPORAL DISCRETIZATION

In the numerical solutions it is better to use implicit methods for time derivatives since they are
numerically stable for any value of �t , the time step. But since these methods are very complicated
for unstructured triangular grids, the pseudo-time iterations in this work were carried out by explicit
multistage RK algorithm with the pseudo-time step calculated from the maximum eigenvalue of
matrix K given in Equation (50):

��= CFL

�max/hmin
(64)

In the numerical solutions, the real time advancement is done in such a way that the new
solutions at t= tn+1 is obtained from the previous time level, tn =n�t where n is the real time
level. The real time derivative in Equation (62) at the new time level is approximated as

�W
�t

n+1

= 1+�

�t
(Wn+1−Wn)− �

�t
(Wn−Wn−1) (65)

where �=0 gives explicit first order while �=0.5 gives the second-order accuracy in time (�=0.5
was used in this work). Since pseudo-iterations are carried between consecutive real time levels,
another subscript m is introduced to denote the pseudo-iteration level. Thus, Wn,m and Resn,m =
Res(Wn,m) denote the state and residual vectors mth pseudo-iteration at time level, tn .

Since the real time advancement requires that the variables are evaluated at the new time level
n+1, Equation (65) is written as

�W
��

n+1,m+1

+ I�

[
1+�

�t
(Wn+1,m+1−Wn)− �

�t
(Wn−Wn−1)

]
Resn+1,m+1 (66)

where m=1,2, . . . ,M is the pseudo-iteration level. Notice that since the starting point of pseudo-
iterations is time level tn , there is no way of changing Wn and Wn−1 during pseudo-iterations.
This is the reason why the states Wn and Wn−1 are written with single superscript. The reason of
pseudo-iterations is to drive the velocity (and magnetic field) divergence to zero so that physically
accepted results are obtained. As the pseudo-iterations converge, the solutions at new time level
are obtained (i.e. Wn+1,M →Wn+1).

In order to introduce some implicitness into the scheme, the residual at new pseudo-iteration
level is approximated as

Resn,m+1≈Resn,m+ Jn,m(Wn,m+1−Wn,m) (67)

where J =�Res/�W is the jacobian matrix of the residual with respect to the state vector. Since
it is simpler, only diagonal terms of this matrix are retained as done in [17]. The net effect of this
matrix is to increase the pseudo-time convergence rate as will be shown in the following section.
In order to show how this residual jacobian is obtained consider simple hydrodynamics case with
W =[P,u,v]T. After trivial but tedious algebra (probably using a symbolic computation package
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such as Maple) one can show that the diagonal elements of residual jacobian (at node i of triangle
T ) are given by the following vector:

Ji=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

��2

4
�nx i
4

(VnU+Pnx )+
(

�Vni
2

+ 1

3

)(
Vni −

vi nyi
2

)
�nyi
4

(VnV +Pny)+ 1

2

(
�Vni
2

+ 1

3

)
(Vni +vi nyi )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(68)

where �=�t/2�T , Pnx,y = Pinx,yi +Pjnx,y j +Pknx,yk , VnU =Vniui +Vn ju j +Vnkuk , VnV =
Vnivi +Vn jv j +Vnkvk and Vni =nx i ui +nyivi and nx i, j and nyi, j are x and y components of the
inward normal vector on the edge across the node i of triangle T . Note that the existence of this
jacobian matrix allows us to use higher CFL numbers and provides different local pseudo-time
steppings for the solution vector. This is the reason why the pseudo-convergence (and hence overall
convergence) rate increases.

In that case, the resulting explicit algorithm for the pseudo-time advancement of W at the nodes
of triangle T can be written as

Wn+1,m+1−Wn+1,m

��
=Res(W)n+1,m+ Jn,m(Wn+1,m+1−Wn+1,m)

−I�

[
1+�

�t
(Wn+1,m+1−Wn)− �

�t
(Wn−Wn−1)

]
(69)

By adding and subtracting Wn+1,m to the second term in Equation (69) and transferring �W to
the left-hand side, one gets[

I − Jn,m��+ I�
1+�

�t
��

]
(Wn+1,m+1−Wn+1,m)=��

[
Resn+1,m− I�

�W
�t

n+1,m
]

(70)

where in this case the real time derivative can be evaluated from

�W
�t

n+1,m

= 1+�

�t
(Wn+1,m−Wn)− �

�t
(Wn−Wn−1) (71)

By defining new modified residual that includes both the time derivative and flux terms as

R̃es
n+1,m =Resn+1,m− I�

�W
�t

n+1,m

(72)

the following semi-implicit algorithm is obtained for pseudo-iterations

Wn+1,m+1=Wn+1,m+��[I ∗
� ]−1R̃es

n+1,m
(73)
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where I ∗
� =[I − Jn,m��+ I�((1+�)/�t)��]. Since the accuracy of the explicit methods is only of

first order, multistage RK algorithm is used for pseudo-integration to increase temporal accuracy:

W0 = Wm

Wn,m
k+1 = Wn,m

0 [I ∗
� ]−1�k��[R̃esn,m]k

...

Wm+1 = WK

(74)

where subscript k denotes the RK stage, �k are the RK parameters and K is the total number of
RK stages. In this work, third-order accurate RK method with the following coefficients was used:

�i =[0.28,0.61,1.0] (75)

Note that such higher-order RK parameters for optimal damping and smoothing the solutions can
be found in [18].

As the RK steps are completed (between the mth and m+1st pseudo-iterations) the solution
at new pseudo-time level, Wn,m+1 is obtained. After each pseudo-iteration level, the convergence
check is established by performing relative convergence check between Wn,m+1 and Wn,m and
finding whether the maximum error in the divergence conditions and the maximum residual among
all the state quantities are both smaller than a pre-specified tolerance. Once this condition is
satisfied, the pseudo-convergence (i.e. �W/��→0) is achieved and one gets Wn+1,M →Wn+1, the
corrected solution at the new time level n+1. The numerical experience shows that the pseudo-
iterations usually converge within 5–10 iterations each of which includes several RK steps. Note
that this semi-implicit procedure is more accurate than the explicit treatments considered in [11, 19]
(last two terms of I ∗

� in Equation (73) do not exist in these references).

9. NUMERICAL RESULTS

This section presents numerical test results obtained by the numerical scheme described in this
paper. These numerical tests include standard tests for standard benchmark flow tests as well as
other interesting tests including heat and mass transfer, radiation, and magnetic effects. The user
friendly code presented here was developed such that structured or unstructured meshes filled with
triangles can be produced and appropriate initial boundary conditions can be specified on specific
windows on the screen by the user prior to the simulations. During the time iterations, desired
flow features (color graphs of W and velocity and magnetic field vectors). In addition, the mesh
structure can be displayed on the screen anytime. The required GUI libraries for this purpose have
originally been developed in C++. All color graphs displayed in this section were obtained by
taking the snapshots of the screen, see [12] for details of visualization feature.

For all the test problems presented, the Prandtl number and artificial compressibility parameter
were chosen as Pr=0.71 and �2=0.5, respectively, unless otherwise specified. The number of
pseudo-iterations depends on �2,�2, and CFL number used for ��. The numerical experience
shows that although the required number of pseudo-iterations is greater during the initial stage, it
reduces to lower values quickly and vanishes as the steady state (in pseudo-time) is reached. In
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addition the residual jacobian matrix increases the pseudo-convergence rate (this behavior will be
shown in Figure 5(b).

9.1. Steady/unsteady lid-driven cavity test

In this standard benchmark test problem the temperature, concentration, magnetic, and radiative
effects are ignored and both unsteady and steady state features of the code for FC are examined.
For this type of convection, the normalization: FC given in Table I, was used, thus leaving the
Reynolds number as the only relevant parameter to specify the flow behavior. The solution domain
is a square cavity (i.e. x, y=[0 :1]) with isotropic triangles (an example is shown in Figure 2). In
this test the flow is impulsively started by assigning an initial uniform lid velocity. This is done
by setting initially all variables to zero except the lid velocity (i.e. u=1 at y=1). The upper lid
boundary condition was chosen to be u=1 and v=0 while the other boundaries were assumed
to be no-slip walls (i.e. u=v=0,dP/dn=0). In order to check the convergence property of the
code, this problem was solved on coarse grid of 21×21 and a fine grid of 81×81 triangles. The
steady solutions for the u velocity versus horizontal direction at x= 1

2 and those for v versus
vertical directional y= 1

2 obtained for two different Reynolds numbers (i.e. Re=100 and 400) are
shown in Figure 3. The solutions agree very well with the solutions of Dailey and Pletcher [20],
who used clustered grids near boundaries and those of Ghia et al. [21], who used very fine grid.
In order to examine the spatial and temporal accuracy of the code, the same problem was run by
fixing time step at �t=0.01 on a coarse and fine mesh and the time history of u at central point
for Re=100 was obtained as shown in Figure 4. As seen, this velocity reaches the same steady
state value of u=−0.205 at t=6.0 for both the coarse and fine homogeneous isotropic meshes

Figure 2. A typical isotropic mesh (11×11) with 121 nodes and 200 triangles.
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Figure 3. The steady y–u and v–x profiles along centerlines for Re=100
and Re=400 at 21×21 and 81×81 grids.
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Figure 4. The moving lid test. Time history of u at the center for Re=100.

showing that the spatial accuracy of the code is excellent since physically correct solutions are
obtained on both coarse and fine meshes. The agreement with the results of Dailey and Pletcher
[20] and Pletcher and Chen [22] is again excellent.

In order to examine the effects of time step refinement on temporal accuracy, the same problem
was solved with Re=400 on the fine grid as done in [20]. The resulting u velocity at the center of
the cavity is shown in Figure 5 for three different time steps of 0.1, 0.01 and 0.001, respectively.
The local minimum value occurring at t=6 is nearly umin=−0.20 and u=−0.12 at t=20. The
same results were given in [20, 22]. This graph shows that the choice of different time steps does
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Figure 5. (a) The time step refinement for the lid-driven cavity test and (b) the effect of residual jacobian
on the pseudo-iteration levels.

not significantly alter the solutions initially (so temporal accuracy is rather satisfactory) but some
numerical errors start to develop at later times whenever larger time steps are used.

9.1.1. Pseudo-iterations. In order to show the effect of the residual jacobian on the pseudo-
iterations between real time levels, the steady lid problem was solved on fine grid and the number
of pseudo-iterations was counted at each real time level. The resulting graphs with and without
residual jacobian are shown in Figure 5(b). As seen, the existence of residual jacobian gives rise
to fewer number of pseudo-iterations and provides a quicker overall convergence.

9.2. Unsteady oscillatory lid test

This test problem deals with laminar incompressible flows in a square cavity whose top wall moves
with a sinusoidal velocity in time. The lid velocity is given as u=cos(t),v=0 and this was kept
as analytical boundary condition on the top boundary and no-slip condition on other walls (i.e.
u=v=0,dP/dn=0). The temporal behavior of the drag force coefficient on the top boundary
was approximated numerically by the following second-order three point backward formula:

D=
∫ 1

0

(
�u
�y

)
dx≈∑

i

1

2

(3ui,M −4ui,M−1+ui,M−2)

�y
�x (76)

where subscript i denotes xi on the top boundary, yM . As lid velocity is sinusoidal, the drag
coefficient shows periodic oscillations as presented in Figure 6 for Re=400 for two different
grid sizes of 31×31 and 121×121. As seen, although the drag magnitude depends on the grid
resolution, the oscillations have the same period regardless of the grid size. This is because, the
numerical formula, Equation (76), used for drag calculation depends on both �x and �y but not on
�t . As seen from Figure 6, the drag changes within [−32,+32] and the period of the oscillations
is nearly 6.2. These values are the same as the results presented in [23], stating that time accurate
solutions can be obtained by the code presented here.
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Figure 6. The time history of the drag on the upper lid for sinusoidally
changing upper lid velocity for the lid test.

9.3. Decaying vertices velocity equilibrium

In this test, temporal and spatial accuracy of the scheme presented here are verified by comparing
the numerical solutions with analytically known solution [24] of 2D decaying vortex whose solution
is given by:

u(x, y, t) = −cos�x sin�ye−2�2t/Re, v(x, y, t)=sin�x cos�ye−2�2t/Re

P(x, y, t) = − 1
4 (cos2�x+cos2�y)e−4�2t/Re

(77)

This test problem was solved in a square mesh of x, y∈[− 1
2 ,

1
2 ] with Re=10 for three different grid

sizes of 41×41, 81×81, and 161×161 points. The initial condition was taken as zero velocity and
reduced pressure everywhere except boundaries on which analytical solution was used as boundary
conditions. The typical color graphs of the numerical solutions of u, v, and P are depicted in
Figure 7 for 41×41 mesh. This solution is preserved in time with the exception that the flow
behavior remains the same but its magnitude reduces exponentially as given in Equation (77). If
the analytical solution is used in the solution domain for initial condition, it was observed that this
solution is preserved to an error of machine zero stating that the code is linearity preserving. If zero
velocity and pressure are provided as the initial condition, the number of pseudo-iterations is large
(near 100) initially since it takes long until the boundary values modify the interior. This number
then reduces significantly in the following iterations. In order to examine the effect of artificial
compressibility parameter, �2 on the convergence properties of the scheme, this test problem was
run on a 41×41 mesh with different values (i.e. �2=0.2,1,10) and the results are depicted in
Figure 8 until t=10. As seen, while the residual convergence at earlier times is closely dependent
upon the value of �2, after nearly t=1 the residual drops to machine zero for all values of �2.
The numerical experience shows that choosing the value of �2 within the range of [0.2–2] always
produces identical results showing that �2 affects only the number of pseudo-iterations but not the
spatial and temporal accuracy.
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Figure 7. Color graphs of pressure, velocity vectors, and u and v velocity for unsteady decaying vortex
test. The solutions were obtained at t=10 on a 41×41 mesh using Re=20 and �t=0.01.

9.4. Flow over a heated electronic component

The fluid flow through a rectangular column produces vortex shedding when the Reynolds number
is larger than 50 as demonstrated by Davis and Moore [25], who solved this problem without
heat transfer. To understand the effects of vortex shedding on both heat transfer and the flow
field around heated electronic components a rectangular region including a heated square was
considered. To compare the results of this test with those obtained by Yang and Fu [26], an FC
normalization was used with Re=250, Pr =0.71, and �t=0.02, �2=2.0. A rectangular region
of x ∈[0,18], y∈[0,4] was filled with isotropic 7200 triangles and a unit was placed in the central
front of the cavity. For implementing boundary conditions, the temperatures were kept at T =1 on
the nodes of the square object boundary (which is also assumed to be no-slip wall along with upper
and lower boundaries). In addition, inlet boundary condition was used on left boundary: u=1,v=0,
and T =0 and outgoing boundary condition was used on the right boundary. Note that due to the
inherent nature of fluctuation distribution method a boundary becomes an outgoing boundary if
no condition is imposed on it. Resulting large structure temperature oscillations around heated
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Figure 8. The time history of the log residual as a function of three different artificial
compressibility parameters: �2=0.2,1,10.

electronic component at times: t=156.2−164 are shown in Figure 9, which includes scanned and
reproduced pictures taken from [26]. Comparing the temperature contours of both solutions, it
can be seen that the present results and those of [26] have reasonable agreement showing vortex
formation behind square and its convection downstream with a reduction in strength. In order to
see if this vortex shedding is periodic, the time oscillations of pointwise y velocity on the centerline
just behind the square are shown in Figure 10. The unsteady solutions clearly show fully developed
periodic oscillations with the same period after t=80, for Re=250. If similar oscillations in v

are examined for Re=1000, it can be seen in [26] that the periodic oscillations start after nearly
t=110.

9.5. Boussinesq convection over heated cylinder

In this test, the temperature effects through BA were examined by using the normalization BC in
Table I, hence, the relevant parameters are Prandtl and Rayleigh numbers. This test shows how
a heated long cylinder creates convection in cold air under buoyancy effects produced by gravity
in the −y direction. To solve this test numerically, a rectangular region including a circle (whose
boundary kept at constant temperature) was filled with triangles of 41×41 mesh. Initially all fields
were set to zero except the temperature that was taken as =1 on circle boundary. No-slip wall
boundary conditions on the circle boundary and free boundary conditions on other boundaries
were used. The resulting temperature profiles (with Pr =0.72) obtained at t=10 for different Ra
numbers are shown in Figure 11. As seen from these figures, the flow develops and rises around
the circle surface absorbing its heat. For small Ra numbers, the flow above circle fills a wide
region while it concentrates on the top and thermal boundary layer gets thinner as the Ra number
is increased. These results are in excellent agreement with those presented in [27].

9.6. Thermally driven cavity

This test is used to simulate heat transfer properties inside cavities and it has a wide range of
applications such as building insulation, solar cavities, ventilation, and cooling of electronic devices
[28]. For numerical solutions of this test, a square cavity of 41×41 mesh was taken and the Prandtl
number was set to 0.71. Initially, all fields were set to zero except the temperatures on the left and
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Figure 9. The temperature color graphs for a flow around heated electronic component for Re=250 and
Pr =0.71 at times, t=156.2,157.6,159,160,161 from the top to the bottom. The left figures (a) were

scanned and reproduced from [26] and (b) present results for Re=250.

right boundaries, which are no-slip walls. The boundary conditions were taken as: u=v=0 on the
walls, =1 on x=0, =0 on x=1, and �/�n=0 on insulating top and bottom walls, y=0,1.
It must be noted here that since BC normalization in Table I is used, �2=1000 was taken. The
resulting temperature and velocity graphs are shown in Figure 12. These results are in excellent
agreement with the results of de Vahl Davis [29]. As seen, as the Rayleigh number is increased,
the thermal boundary layer on side walls gets thinner and flow separation starts to take place. In
order to compare these results numerically with those of other investigators the maximum modulus
of the horizontal velocity at vertical centerline, umax, and vertical velocity at horizontal centerline,
vmax, were obtained on the same 41×41 mesh. The values of these velocities were listed in Table I
of Rubio et al. [28]. According to this table, several umax/vmax values for Ra=104 (obtained by
other investigators) are: 16.064

19.515 ,
16.182
19.509 ,

16.1630
19.608 ,

16.162
19.614 while those for the present work are 16.136

19.605 .
For Ra=105 these values are: 33.965

67.562 ,
35.07
66.73 ,

34.81
68.22 ,

34.772
68.329 and those for the present work are 35.355

69.055
and finally for Ra=106: 63.951

209.711 ,
67.49
206.32 ,

65.33
216.75 ,

64.082
214.126 and the present work: 71.841

226.299 . From these
results one can observe excellent agreement with those reported in the literature for Ra=104 and
105 and close agreement for Ra=106.
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Figure 10. The time oscillations of y-velocity (v) on a point just behind the square
whose temperature is kept at T =1.

Figure 11. Boussinesq convection around an initially heated circle in a free environment as a function of
different Ra numbers, with Pr =0.72. Dark regions around circle have higher temperatures.

9.7. Heat and mass transfer test: salt finger instability
When heat and mass transfer occur at the same time a complex fluid motion called double-
diffusive convection occurs. When temperature and concentration gradients are created in the same
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Figure 12. The temperature and velocity graphs obtained from the screen of the code thermally driven
cavity test for Ra numbers of (a) 104; (b) 105; and (c) 106. All walls are no-slip walls on which u,v=0.
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and opposing directions and the fluid is exposed to magnetic fields, interesting flows (seen in
oceanographical, geological, and biological research) can be produced in laboratories. The first test
problem was solved in order to investigate the characteristics of hydromagnetic double-diffusive
convective flow of a gas mixture in rectangular enclosure with upper and lower walls being
insulated [30]. The flow was solved in a rectangular region (x ∈[0,1], y∈[0,2]) whose upper and
lower walls are adiabatic and impermeable while the left wall is the source where mixture diffuses
to right wall and a constant magnetic field was applied from left to right wall. The initial and
boundary conditions can be written as:

t = 0 :u=v=0, =0, C=0

x = 0 :u=v=0, =0, C=0

x = 1 :u=v=0, =1, C=1

y = 0,1 :u=v=0,
�

�y
=0,

�C
�y

=0

(78)

The parameters Pr =1.0, Le=2.0, RaT =105,N =0.8 were used along with the DD normalization
in Table I. In that case the dimensionless body force for vertical velocity becomes: −Pr(RaT −
NC+Ha2v) where Ha is the Hartmann number representing the magnetic field strength. This
problem was solved on a 41×81 rectangular grid until steady state solutions were obtained. The
resulting temperature and concentration contours for different Ha numbers are shown in Figure 13
along with those scanned and reproduced from [30]. The agreement of solutions for Ha=0 is
excellent but for Ha=25, the concentration contours differ slightly near center. This may be due
to the numerical errors introduced when the magnetic term was treated as a source, which was
distributed equally to the nodes of triangles.

This test is very important in fuel cell configurations and shows how the salinity and temperature
profiles evolve in time after a salty liquid is suddenly exposed into a strong temperature gradient.
The onset of finger convection and its dynamics in a stratified fluid layer caused by thermal
and salinity motions were investigated experimentally by Chen and Chen [31]. This motion was
generated by bringing a warm and solute-rich fluid into contact with side walls, which were kept at
constant temperature. If initial salinity and temperature gradients are perpendicular to each other,
salt fingers and vortices that last very long times in the domain were observed experimentally in
[31]. Ruddick [32] has also made some experiments with heat-salt system to generate property
anomalies. They filled a tank with water having salinity gradient and kept its walls warmer or
cooler than the room temperature and observed that a regular sequence of salinity layers were
produced first at the walls and then grew into the interior of the fluid. The convection layers at the
extending noses beyond the fluid are stratified and they create inclined regions (slopes reducing
to colder wall) stacked on top of each other. Ruddick [32] realized that these configurations have
some relationships to oceanic thermohaline intrusions occurring near oceanic fronts. Since it is
difficult to experimentally visualize the behavior of salinity, this original numerical test can be
used to investigate how these fingers are formed and why they remain in their specific locations
for a long time showing a memory effect. To do that a rectangular cavity of 41×321 mesh with
x ∈[0,1] and y∈[0,8] was considered. BC normalization in Table I was used with Pr =0.71,
Ra=19600, N =3, and �2 was set to 5 and �t=0.005 was taken. Initially, the velocity and
temperature fields were set to zero everywhere, except walls and the salinity was set to S=1− y so
that the salt concentration gets higher toward the bottom. This stationary fluid is suddenly brought

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1063–1097
DOI: 10.1002/fld



A VISUAL INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS SOLVER 1089

Figure 13. Steady thermal dominated double-diffusive solutions of temperature and
concentration reproduced from [30] and current results. The dimensionless parameters

are: Pr =1.0, Le=2.0, RaT =105,N =0.8: (a) Ha=0 and (b) Ha=25.

into contact with hot and cold walls on the right and left walls (kept at =0 and 1), respectively.
Note that all the walls of cavity were assumed to be no-slip walls with u=v=0,dP/dn=0 and
the salinity values on the lower and upper boundary nodes were kept at S=0 and −7, respectively.
With these initial and boundary conditions, salt finger instability develops at the bottom near hot
wall and rises up due to density and temperature gradients and buoyancy forces. Periodically, new
vortices are produced on the top of the other eventually and the whole fluid column is filled with
vortices rotating in their fixed locations. This shows that vortices can be stored in fluid once they
are successfully developed. This is depicted in Figure 14 as the time evolution of the temperature
and salinity at four different times: i.e. t=40,100,150,180. As seen the expected instability starts
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Figure 14. The salt finger instability test. The upper figures show temperature and
the lower figures show salinity graphs. The snapshots are taken from the code screen:

(a) t=40; (b) t=100; (c) t=150; and (d) t=180.
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nearly at t=40 and fully develops at t=180. The experimental analysis [33] for vertical salinity
and horizontal temperature gradients showed that the ratio of dimensionless layer thickness to
the wall separation distance was h/d=0.81±0.1 for Rayleigh numbers ranging from 14 000 to
54 000. This observation was supported by numerical calculations in [34]. In the results presented
here (see distance between horizontal lines in Figure 14(d)) it was calculated that h/d=0.78
for Ra=19600. This result is obviously in close agreement with [31, 33, 34]. Similar salt finger
development in time can also be seen from the experimental Figure 1 of Ruddick [32] in which
the vortices appear near the left wall and propagate almost horizontally toward the other wall.

It must be noted here that after examining the long time behavior of these circulations it was
found that the vortices preserve their locations for a long time before they start to decay (until
t=220). This interesting behavior shows that the fluid has a memory property for a time duration.

9.8. Radiating and magnetized heat and mass transfer

The heat transfer analysis of the high-temperature fields occurring in furnaces, boilers, and gas
turbine combustor flows is mainly affected by radiation effects. Some analytical results can be
obtained when convection effects can be ignored but the analysis becomes impossible to solve
analytically when both radiation and convection are present. The interaction of incompressible,
viscous fluid flow with thermal radiation, heat, and mass transfer is also important in hypersonic
flows and plasma physics as well as glass production and furnace engineering [35]. The solution
of radiation MHD equations requires full radiation transport equations described in Section 3 and
is very difficult since random effects should be solved by Monte Carlo techniques. The solutions
of full radiative MHD equations are being developed by the author and will be the subject of
subsequent publications. The tests considered in this section deal with simple heat and mass
transfer effects of an incompressible, viscous, and radiating fluid flow around an impulsively started
isothermal hot sheets. For all the tests considered, a constant magnetic field in the x direction was
also assumed so that a magnetic source appeared for the v velocity.

Radiation Test.1. In this test one of the simplest problems in which electrically conducting,
radiating, viscous, incompressible fluid past an impulsively started infinite vertical plate under
the effect of external magnetic field perpendicular to the plate was solved by Mazumdar and
Deka [36]. The medium was considered to be optically thick so that the fluid does not absorb its
own emitted radiation (non-gray gas near equilibrium). In that case, the radiative heat flux term
(source in heat equation) can be taken as: �q/�y=const(T −T∞), see Cogly et al. [6]. Since the
temperatures considered are very high, radiative equilibrium condition established in the domain and
convective terms can be neglected. In that case, solving the following purely diffusion equations is
satisfactory:

�v

�t
= �2u

�x2
+−Mradv (79)

�

�t
= 1

Pr

�2
�x2

− Nrad

Pr
 (80)

Notice that the last term in Equation (80) is the dimensionless heat flux term as taken in [6, 36].
To solve this problem with code presented here the convection terms as well as u, C , and B
were set to zero by some parameters, the viscous derivatives in the y direction were set to zero,
and obviously Maxwell’s equations were not solved. The RC normalization given in Table I was
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Figure 15. The simple radiating sheet test problem. The graphs show steady state V (x) profiles in the x
direction. Pr =0.71,Nrad=0.5,Mrad=1.0,r =0.0 were taken.

used along with Mrad=1, Nrad=0.5, Pr =0.71, and r =0, N∗
heat=0. In that case the source for

vertical velocity given by Equation (39) can be taken as simply S2=−Mradv where the second
term represents the effect of magnetic field. For numerically solving this equation, �2=20 was
taken and an 81×11 isotropic triangular mesh (with x : [0 :15], y : [0,1]) was used with �t=0.01.
Initially, all quantities were set to zero and left and right boundary values were set to: v=1,=1
at x=0, v→0,→0 as x→0 while other boundaries were taken as free boundaries as done
in [36]. The resulting velocity profiles y=1 along x at t=0.2,0.4,0.8 are given in Figure 15
along with the results given in Figure 15 of [36]. The overlapped graphs obviously show that the
time-dependent solutions agree very well. This result shows that the code is able to solve simple
radiative non-gray gas flows in optically thick limit.

Radiation Test.2. In this test, steady state free-convection of heat and mass transfer near
isothermal sheet affected by buoyancy, concentration, radiation, and transverse magnetic field was
solved. The Prandtl number was taken as 3.0 and that the fluid can be considered to be an optically
gray medium where the Rosseland approximation is valid. To solve this problem with the code
presented, magnetic field was not solved but magnetic effects were introduced as an additional
source next to buoyancy terms due to temperature and concentration. In that case, the source for
vertical velocity given in Equation (39) can be taken as S2=Gr+GcC−Mradv where Gr and
Gc are Grashof numbers for . In addition, the radiation source given in Equation (43) was used
for temperature. This problem was solved for comparison with the results of Ghaly [4] where they
solved the problem by change of variables and using symbolic computation software, Mathematica.

The similar mesh (with x : [0 :15], y : [−1,1]) and zero initial conditions were used as previous
test case but the left and right boundary conditions were taken as: u=0,v= y,=1,C=1 at x=0
and →0, C→0 at x=15. According to these conditions it is seen that the sheet moves vertically
with a velocity, which is a linear function of y. It must be noted here that there is a fundamental
error in this test of Reference [4] since the boundary condition for vertical velocity is not correct as
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Figure 16. Variation of steady state dimensionless temperature with
Pr =3.0,Nrad=1,Mrad=0.1,r =0.05, Sc=2.

x→∞. At large distances, the temperature and concentration are equal to ambient values so that
buoyancy terms are zero. In addition, the velocity gradient �v/�x and diffusion terms are also zero
at large distances. In that case the momentum equation reduces to u�v/�y=−Mradv showing that
vertical velocity changes in the y direction if Mrad is non-zero. This result is a contradiction with
the constant velocity approximation done in [4] as x→∞. The correct boundary condition should
be free (outgoing) vertical velocity at right boundary. As done in [4], Pr =3.0,Nrad=1,Mrad=
0.1,r =0.05, Sc=2 were taken and the steady state results were obtained after the convergence
was established by the code. Figure 16 gives the overlapping temperature profiles of [4] and
numerical results obtained with intentionally used wrong boundary condition (i.e. v=1 at x=15).
The agreement can be seen from the overlapped graphs. Figure 16 also includes the numerical
result with free boundary conditions used for vertical velocity. It is seen that the temperature drop
is slower with this more consistent boundary condition for velocity.

Radiation Test.3. In this test, the Rosseland approximation was used for optically thin fluid
affected by buoyancy forces due to temperature and concentration in the existence of constant
magnetic field [35]. The dimensionless vertical velocity and temperature sources were taken as

GrT +GrCC−Mradv and
4

3Nrad

�2
�y2

respectively. The initial and boundary conditions were: u=v==C=0 at t=0 and v=1,u=
0,�/�x=�C/�x=−1 at x=0, v=0,=0,C=0 at y=0, and v→0,→0,C→0 as x→∞
as done in [35]. The same mesh was used with the following parameters and full convection
and viscous terms were retained in the code: Gr =4, Pr =0.71,Nrad=5,Mrad=1,r =0, Sc=0.6,
N =1. With the time step of �t=0.01, this problem was solved in time and the resulting vertical
velocity profile at y=1 and at t=8.58 were presented in Figure 17 along with Figure 3 of [35]
as overlapped graph. The velocity is peaked near the wall and eventually reduces to zero away
from the plate. The agreement with Reference [35] is again very well proving that the code can
accurately solve time-dependent radiative heat transfer problems.
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Figure 17. The radiating sheet test problem. The graphs show steady state v profile in the x direction.
Used parameters are: Gr =4, Pr =0.71,Nrad=5,Mrad=1,r =0, Sc=0.6,N =1.

9.9. Incompressible MHD flow past circular cylinder

This test consists of the flow of a conducting incompressible flow around a perpendicular cylinder
under the effects of external magnetic field. This problem was solved as Armero and Simo [37] on
a rectangular region of x ∈[−4.5,15.5], y∈[−4.5,4.5], which is filled with isotropic triangles and
which includes a circle of radius 1 with no-slip boundary (i.e. u=v=0,dP/dn=0,�=0). The
left boundary was taken as an inlet boundary with u=1,v=0 and all other boundaries were kept
untouched during runs (free boundaries). The initial velocity and magnetic field vector were set to
zero within the mesh initially. This problem was solved with no magnetic field and aligned (Bx )
and perpendicular (By) magnetic fields. When magnetic fields are present, all boundaries (including
circle surface) were kept at their constant values (i.e. here 1). The non-magnetic solutions with
Re=100 are unstable since vortices start to shed from circle and create periodic oscillations. The
inclusion of magnetic field eliminates this transient response and produces smooth laminar flows.
This test was solved with N =1, Rem=16, and Re=100 in order to compare the results with those
of [37]. Note that the Hartmann number (used in [37]) can be obtained from Ha2/Re=N/Rem
and it takes a value of 2.5 for specified N and Rem numbers, (i.e. the central picture of Figure 12
of Reference [37]).

The resulting time-dependent graphs of u were depicted on Figure 18 with no magnetic field,
aligned magnetic field Bx , and perpendicular magnetic field at times: t1=10, t2=80, t3=120. As
seen from these graphs the flow is made laminar with aligned magnetic field while perpendicular
field does a better job and stabilizes the flow totally. Hence, at Re=100 and with the magnetic
fields included, the flow symmetry is broken but the flow is still laminar. The results with no
magnetic field and perpendicular magnetic field correspond and agree well with the top and central
pictures in Figure 12 presented in [37]. Another agreement with the results of [37] is that for
Ha=2.5, the periodic oscillations start nearly after t=80.
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Figure 18. The x-velocity graphs at different times with no magnetic
field, with only Bx and with only By .

10. CONCLUSION

A numerical code which is able to solve (steady state or transient nonlinear) incompressible MHD
equations with mass and heat transfer effects as well as simple radiative effects is presented. The
code utilizes a Lax-Wendrof-type MD scheme on structured and unstructured triangles and takes the
advantage of dual time stepping for velocity and magnetic field divergence relaxation. The heat and
mass transfer effects were considered by Boussinesq approximation. The pseudo-time algorithm
includes a simplified jacobian matrix of the residual in order to introduce some implicitness to the
multi-stage Runge-Kutta algorithm. With this code, it is possible to choose different normalizations
so that the coefficients of viscous terms and sources are handled automatically provided that
necessary dimensionless parameters are introduced by user. Several test problems for simple
hydrodynamics, heat transfer and diffusion, mass transfer and heat conduction, radiative effects,
and finally full MHD flows around cylinder were solved numerically. It is shown by numerical
results that the code is reliable and robust and it can be used safely for a variety of 2D problems
varying from simple natural flow to radiative charged flows at different concentrations under the
effects of external and internal sources. Currently, three-dimensional version of this code is being
developed by the author.
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